Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Masood Parvez, ${ }^{\text {a }}$ * Muhammad Riaz $^{\text {b }}$ and Abdul Malik ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, and ${ }^{\text {b }}$ International Centre of Chemical Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi 75250, Pakistan

Correspondence e-mail: parvez@ucalgary.ca

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.121$
Data-to-parameter ratio $=11.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Eupatorin

The crystal structure of the title compound, 5,3'-dihydroxy-6,7,4'-trimethoxyflavone, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{7}$, isolated from Ballota limbata Linn., contains discrete molecules with normal molecular dimensions. The structure is stabilized by intramolecular and intermolecular hydrogen bonds between hydroxyl H atoms and carbonyl O atoms, with $\mathrm{O} \cdots \mathrm{O}$ interactions of 2.594 (2) and 2.673 (2) \AA. The flavone moiety is essentially planar with methoxy methyl groups lying 0.169 (3)0.851 (2) A out of the plane.

Comment

Ballota limbata Linn. (Labiatae) is a small prickly shrub, found in the northern hilly areas of Pakistan. The chemical constituents of B. limbata have been investigated due to its uses in folk medicines (Watt, 1972). Eupatorin, (I), has been previously isolated from the cytotoxic extract of Eupatorium semiserratum DC. (Kupchan et al., 1969). In this article, we describe the crystal structure of (I).

(I)

The crystal structure of (I) is composed of an essentially planar flavone moiety (Fig. 1), with a maximum deviation of 0.085 (1) \AA for O1. The angles between the mean planes of the methoxy groups attached to $\mathrm{C} 7, \mathrm{C} 4^{\prime}$ and C 6 , and the meanplane of the flavone moiety are 7.01 (19), 2.9 (2) and 66.57 (12) ${ }^{\circ}$. The methyl C atoms C11, C12, and C13 lie at -0.851 (2), 0.219 (3) and 0.169 (3) \AA from the mean plane of the flavone moiety. The bond distances and angles in the structure are normal and agree well with the corresponding values reported for ten similar compounds contained in the October 2000 updates of the Cambridge Structural Database (Allen \& Kennard, 1993). The mean bond distances are: $\mathrm{O}-$ Csp ${ }^{3} 1.431$ (3), O - Csp $^{2} 1.359$ (13), Csp ${ }^{2}-$ Csp $^{2} 1.442$ (18) and aromatic $\mathrm{C}-\mathrm{C} 1.393$ (12) \AA, while $\mathrm{C} 4=\mathrm{O} 2$ is 1.266 (2) and $\mathrm{C} 2=\mathrm{C} 3$ is essentially a double bond with a distance of 1.352 (2) Å.

The crystal structure is stabilized by an intramolecular hydrogen bond involving a hydroxyl H atom and the carbonyl

Received 15 February 2001 Accepted 21 February 2001 Online 28 February 2001

Figure 1
ORTEPII (Johnson, 1976) drawing of (I) with 50% probability ellipsoids.

Figure 2
Unit-cell packing of (I).

O atom [$\mathrm{O} \cdots \mathrm{O}$ separation 2.594 (2) \AA and $\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$ angle of 148°] and an intermolecular hydrogen bond involving the other hydroxyl H atom and the carbonyl O atom of another molecule $[\mathrm{O} \cdots \mathrm{O}$ separation 2.673 (2) \AA and $\mathrm{O} 6-$ H6 $\cdots \mathrm{O} 2^{\mathrm{i}}$ angle of 174° [symmetry code: (i) $x-1, y, z-1$]. In the unit cell, the molecules stack parallel to each other in a herring-bone pattern as presented in Fig. 2.

Experimental

Ballota limbata plants were collected from the Mansehra district of North Western Frontier Province, Pakistan. The shade-dried and ground whole plant material (16 kg) was extracted with methanol. The resulting gummy material (1 kg) was partitioned into hexane, chloroform, ethyl acetate and n-butanol soluble fractions. The chloroform fraction was subjected to column chromatography using a hexane/chloroform and chloroform/methanol gradient system. The fraction using chloroform/methanol (9:1) over flash silica gel afforded (I) as yellow needles.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{7}$
$M_{r}=344.31$
Monoclinic, $P 2_{1} / c$
$a=5.5475$ (8) \AA
$b=37.690(5) \AA$
$c=7.4742$ (6) \AA
$\beta=96.462$ (9) ${ }^{\circ}$
$V=1552.8(3) \AA^{3}$
$Z=4$
$D_{x}=1.473 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=25-50^{\circ}$
$\mu=0.97 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, yellow
$0.40 \times 0.20 \times 0.07 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract-
ometer
$\omega-2 \theta$ scans
Absorption correction: empirical ψ scan (3 reflections; North et al., 1968)
$T_{\text {min }}=0.70, T_{\text {max }}=0.94$
5869 measured reflections
2706 independent reflections
2310 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=68.0^{\circ}$
$h=0 \rightarrow 6$
$k=-45 \rightarrow 45$
$l=-8 \rightarrow 8$
3 standard reflections every 200 reflections intensity decay: 0.3\%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.121$
$S=1.09$
2706 reflections
232 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.068 P)^{2}\right. \\
& \quad+0.387 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0092(9)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C2	$1.359(2)$	$\mathrm{C}^{\prime}-\mathrm{O} 6$	$1.351(2)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.379(2)$	$\mathrm{C} 4^{\prime}-\mathrm{O} 7$	$1.354(2)$
$\mathrm{C} 4-\mathrm{O} 2$	$1.266(2)$	$\mathrm{O} 4-\mathrm{C} 11$	$1.427(2)$
$\mathrm{C} 5-\mathrm{O} 3$	$1.348(2)$	$\mathrm{O} 5-\mathrm{C} 12$	$1.431(2)$
$\mathrm{C} 6-\mathrm{O} 4$	$1.374(2)$	$\mathrm{O} 7-\mathrm{C} 13$	$1.435(2)$
$\mathrm{C} 7-\mathrm{O} 5$	$1.351(2)$		
C2-O1-C9	$119.97(12)$	$\mathrm{C} 7-\mathrm{O} 5-\mathrm{C} 12$	$118.77(13)$
$\mathrm{C} 6-\mathrm{O} 4-\mathrm{C} 11$	$114.93(13)$	$\mathrm{C} 4^{\prime}-\mathrm{O} 7-\mathrm{C} 13$	$117.25(14)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$	0.82	1.86	$2.594(2)$	148
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 6 \cdots 2^{\mathrm{i}}$	0.82	1.86	$2.673(2)$	174

Symmetry code: (i) $x-1, y, z-1$.
The H atoms were located from difference maps and were placed at geometrically idealized positions ($\mathrm{C}-\mathrm{H} 0.93$ and $0.96 \AA$, and $\mathrm{O}-$

H $0.82 \AA$) utilizing riding models, and torsional parameters were refined for each methyl group. The methyl and non-methyl H atoms were allowed isotropic displacement parameters 1.5 and 1.2 times, respectively, the displacement parameters of the atoms to which they were attached.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

The authors thank Professor Manzoor Hussain, Botanist, Government Postgraduate College-1, Abbotabad, NWFP, Pakistan, for assistance in the identification and collection of this plant.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 131-137.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kupchan, S. M., Siegel, C. W., Hemingway, R. J., Knox, J. R. \& Udayamurthy, M. S. (1969). Tetrahedron, 25, 1603-1615.

Molecular Structure Corporation. (1994). TEXSAN. MSC. 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Watt, G. (1972). Dictionary of the Economic Products of India, Vol. 1, edited by G. Watt, E. Thurston \& T. N. Mukarji, pp. 365-366. Delhi: Cosmo Publications.

